搜索新闻

LCoS(硅基液晶)芯片设计与应用前瞻

2LCoS显示屏
来源:投影时代 更新日期:2008-05-08 作者:佚名
内容导航:  分页浏览 | 全文浏览

2 LCoS显示屏

LCoS显示屏通常分为两大类:透射型和反射型。虽然它们几何光学原理上截然迥异,但都能有选择地调制外光源光线而形成图像。透射型首先在晶片上完成驱动控制电路的设计制作,再用剥离(lift-off)技术[3]或各向异性刻蚀(anisotropic etching)技术[4]分离出管芯,粘附到透明衬底上制成微显芯片。如此巧妙设计一方面是利用单晶硅的优质电学性能,另一方面则是利用成熟的IC设计制造技术。反射型则是直接在晶片上制作驱动电路和显示矩阵电路,然后以此为基底封装液晶材料形成类似传统LCD(Liquid Crystal Display)结构的平板显示屏。所以常规IP技术可直接用于设计制作硅基液晶显示屏。

图2是笔者运用Cadence EDA工具,采用0.6μm的n-阱四层金属CMOS工艺规则设计的反射式LCoS(VGA分辨率,时序彩色化)电路结构图。其电路可划分为行扫描驱动器,列数据输入驱动器(包含DAC电路)和显示驱动矩阵(有源NMOS矩阵)[5]。

在列数据输入驱动器中,串行输入的多位数字视频信号通过移位寄存器的作用,依次存入数字锁存器,然后在同一读出信号作用下,配合行扫描信号,同时输入到各列的数/模转换器(DAC),之后输出模拟电压信号作用到像素,因此一帧图像将被一次一行地传送到所有列。

在行扫描驱动器中,行扫描信号通过另一组移位寄存器作用,产生与数字视频信号同步的逐行扫描信号。

有源显示驱动矩阵的每一个像给包括像素开关(NMOS晶体管)、存储电容和在它们上面的铝反射电极。NMOS晶体管控制列数据线对液晶像素的充电,而存储电容中的充电电荷建立了相对于控制电极的电压差。由于液晶材料本身也有电容,并沿分子的取向充电,当一定量的电荷积聚在像素上时,液晶将按所施加的电场取向。液晶分子的再取向,导致液晶电容的变化,这就改变了加在像素的电压。为了解决这个问题,需要用较大的存储电容。

像素的截面如图3所示,采用了四层金属,分别用于扫描线、数据线、避光层和铝反射镜面电极。扫描线控制NMOS晶体管(像素开关)的栅极,当NMOS导通时数据线上的信号驱动到像素上。晶体管漏极,存储电容和反射镜面电极是电导通的。硅背板顶部制作1μm厚的液晶衬垫,用以确定液晶盒间隙。

整个硅背板都是在常规IC芯片生产线上完成的。在加工好的LCoS显示芯片上,覆盖取向层,涂上密封胶,粘合附着ITO电极的玻璃盖板,最后向这个液晶盒灌注液晶材料就形成了LCoS显示器。尽管LCoS显示芯片的面积比较大,但绝大部分是像素阵列,晶体管密度较低,故可得到高的成品率。采用现代IC制造技术生产LCoS显示器可谓驾轻就熟,也是制造高分辨率LCD显示器的一条降低成本途径。

 标签:
特别提醒:本文为原创作品,转载请注明来源,翻版/抄袭必究!
广告联系:010-82755684 | 010-82755685 手机版:m.pjtime.com官方微博:weibo.com/pjtime官方微信:pjtime
Copyright (C) 2007 by PjTime.com,投影时代网 版权所有 关于投影时代 | 联系我们 | 欢迎来稿 | 网站地图
返回首页 网友评论 返回顶部 建议反馈
快速评论
验证码: 看不清?点一下
发表评论