搜索新闻

H.264/AVC技术进展及其务实发展策略思考

H.264/AVC的重要技术进展(二)
来源:邮电设计技术 更新日期:2006-08-08 作者:陈如明
内容导航:  分页浏览 | 全文浏览

1.3 对网络、信道变化的自适应性及高抗干扰能力与顽健性

  为适应IP及移动环境的QoS需要,获得信道性能的高抗干扰能力与顽健性,视频编译码器要附加更多苛刻的应用要求,诸如高压缩效率、低功耗、重量轻、较少内存及低复杂度,对误码、丢包有较强抗干扰能力与顽健性,支持适应时变环境的快速码速调整能力,设置不用优先级进行适应性处理及有效地适配指定网络机制等。

1.3.1 NAL的分层结构分层处理

  如上所述,NAL层的引入可大大提高H.264/AVC对网络、信道的适应能力。例如在3G移动通信的IP包分组传送场合,NAL单元即可经顽健头前置压缩(ROHC)封装于PPP成帧包中,尔后形成无线链路层业务数据单元,再在物理层中加上CRC校验单元传输,获得抗误码性能的有效增强。

1.3.2 序列参数集设计

  由于序列和图像头信息之类关键信息比特的丢失会造成译码时的严重后果,对此H.264/AVC的序列参数集设计可提供此头信息的有效与顽健传输。它将这些关键信息分离出来进行传输,使之处在特定的灵活可靠的环境中。此序列参数集用于一连串编码视频序列中,图像参数集供一个编码序列中一个或多个图像译码用,它们包括图像类型、序列号等。译码时某些序列号的丢失可用于检测信息包的丢失与否,以及时采取弥补措施,增强抗干扰能力与顽健性。

1.3.3 有效可靠的同步处理

  同步对控制传输质量至关重要,H.264/AVC设置了一系列有效可靠的同步处理措施。H.264/AVC中的时间同步可通过采用帧内图像刷新来完成,空间同步由条结构编码来支持。同时,为便于误码以后的再同步,在一幅图像的视频数据中还提供了一定的再同步点。

1.3.4 纠错及环路时延控制

  H.264/AVC中的误码跟踪、FEC及一种短时延本地重发纠错ARQ技术相组合,可应用于无线视频传输,以确保较好的抗干扰能力。同时,在基站设置一种视频代理服务器,亦可大大减少环路时延,并可准确发现并纠正误码。

1.3.5 数据分割模式的误码等级保护

  H.264/AVC中定义了数据分割模式,即对图像首先进行分段,段内宏块数据划分为宏块头信息、运动矢量及DCT系数三部分,三部分之间尚有标识符分隔。这样,译码器可较方便地检出受损数据类型,减少误码对图像质量的损害。同时,这种数据分割模式亦有利于信道编码时进行不等权保护,即对重要数据进行等级较高的保护等。

1.3.6 片结构及灵活片宏块顺序安排改善误码性能

  如上所述,借助片结构及灵活片宏块顺序(FMO)安排可改善误码性能,片译码的独立性可明显减少误码扩散,而且FMO的使用易于实现误码掩盖。

1.3.7 自适应码率控制及SI、SP流切换

  码率的自适应快速控制可通过宏块层改变量化精度来实现。涉及分级及流切换问题,移动通信中常用空间/时间分级支持其较大范围自适应比特速率变化。MPEG-4中采用精细度可伸缩(FGS)实施分级编码,而H.263中定义了时间域、空间域及信噪比(SNR)三种分级能力,但这些方法分级实施视频流传输效率均较低。目前较多采用流切换技术,周期性刷新内(INTRA)帧即为一例。H.264/AVC的码率控制(RC)主要有JVT-F086及JVT-G012提出的两种方案,通常认为后者算法较优。JVT-G012通过引入基本单元及线性模型的概念,提出一种自适应基本单元层码率控制算法。此基本单元可能是一帧、一片或一个宏块。线性模型预测当前基本单元的平均残差绝对值(MAD)是通过前一帧相应位置的基本单元而获得。同时H.264/AVC如上所述,可允许某些译码器的译码处理与其他译码器产生的视频流精确同步而不产生图像切换损失,从而可在不同数据速率的视频流内容间切换译码器,实现数据丢失或误码恢复,及使用快速前向、快速后向等特技。而SI、SP帧即可用于流切换、流拼接、随机接入、错误恢复等,以提高其抗干扰能力及顽健性,亦可避免频繁刷新INTRA帧带来的效率下降。

推荐视频会议厂商
广告联系:010-82755684 | 010-82755685 手机版:m.pjtime.com官方微博:weibo.com/pjtime官方微信:pjtime
Copyright (C) 2007 by PjTime.com,投影时代网 版权所有 关于投影时代 | 联系我们 | 欢迎来稿 | 网站地图
返回首页 网友评论 返回顶部 建议反馈
快速评论
验证码: 看不清?点一下
发表评论