搜索新闻

H.264/AVC技术进展及其务实发展策略思考

H.264/AVC的重要技术进展(一)
来源:邮电设计技术 更新日期:2006-08-08 作者:陈如明
内容导航:  分页浏览 | 全文浏览

H.264/AVC的重要技术进展

  NGN及3G、3G演进和NGBW发展的一个主要目标即为包括视频在内的多媒体应用。对此,H.264/AVC定义了3种视频服务类型,即会话型服务(如可视电话、视频会议等)、现场或先期录制的视频流型服务和多媒体消息类服务MMS。

  为适应NGN IP网络及带宽资源有限的时变型移动/无线信道的传输需要,H.264/AVC无论从网络层匹配自适应能力、提高源压缩编码效率及信道抗干扰能力等方面均进行了较精心的设计,有较大幅度的性能增强与改进。

1.1 视频编译码结构的分层设计

  视频编译码结构从功能和算法上分为两层设计,即视频编码层(VCL)及网络适配层(NAL)。VCL负责高效率视频编码压缩;NAL负责网络的适配,即提供对不同网络性能匹配的自适应处理能力,它针对下层网络的特性对数据进行封装,包括成帧、发送相应信号给逻辑信道、利用同步信息进行处理等。NAL从VCL获得数据信息,包括头信息、段结构信息及实际净荷信息,进而将它们映射到下层的各传输协议上。这些协议诸如H.320、H.323、H.324、MPEG-2等。NAL单元按RTP序列号顺序传送,序列号设置可发现丢失的是哪一个VCL单元,即使基本编码图像丢失,借助冗余编码图像,仍可获得较“粗糙”的图像恢复。同时,借助图像的片(Slice)、片组、宏块(MB)结构及黑白宏块非扫描顺序的灵活宏块顺序(FMO),安排与切换P帧(SP)、切换I帧(SI)的流切换、流拼接、随机接入与差错恢复等,都有利于提高其误码掩盖及抗干扰能力,并有助于压缩效率的提高。NAL层的引入,大大提高了H.264/AVC对不同网络及复杂信道的适应能力。

1.2 高效率视频编码设计

1.2.1 统一的可变长度编码(UVLC)码表

  以往标准的熵编码通常采用变长度的哈夫曼编码,其码表不统一,不能适应变化多端的视频内容,从而影响编码效率的提高。在此,即对H.263不同系数采用不同码表进行VLC作了改进,采用了一个统一码表的UVLC,同时,又对H.26L中的VCL方法进行了改进,使量化后的DCT变换系数使用基于内容的自适应可变长度编码(CAVLC),此外还定义了一种基于上下文内容的自适应二进制算术编码(CABAC),其性能比CAVLC更好,当然计算更复杂。从而,借助UVLC、CAVLC及CABAC较好地提高了压缩编码效率。

1.2.2 自适应帧、场编码(AFFC)

  如众所知,帧中邻行空间相关性强,场中邻行时间相关性较强,从而帧编码可用于运动性较小图像编码,而场编码可用于运动性较大图像编码。按此根据图像运动状况选择编码模式即构成图像自适应帧、场编码(PAFFC),以提高编码效率。进而,若一帧内包含一些运动快慢不同的区域,还可将此区域划分为“宏块对”进行AFFC,此时即称为宏块自适应帧、场编码(MBAFFC)。

1.2.3 4×4块的整数变换

  H.264/AVC中的DCT变换与H.263中的情况不同,它采用的变换单位不是8×8块,而是4×4块,且变换是整数操作,而不是实数操作。其优点为:运算速度快、精度高并占用较少内存。整数操作,编译码有严格的反变换,避免了截取误差,减少了运动边缘块的编码噪声。同时,4×4变换比8×8变换产生的方块效应亦要小。

  为进一步利用图像的空间相关性,在对色度分量预测残差及16×16帧内预测的预测残差进行DCT变换后,还对每个4×4变换系数块中的DC系数组成的2×2和4×4大小的块进一步做哈达玛(Hadamard)变换,以更好改善性能。

1.2.4 动目标估值(ME)算法的改进

  a) 搜索精度增强:首先,进一步增强了动目标估值的搜索精度,在半像素预测后的生成矩阵基础上,内插一次扩展至1/4像素精度矢量,在1/4像素基础上再内插一次,获得1/8像素更高精度的运动矢量。

  b) 宏块(MB)更精细与多样化分解:对每一个MB,进行更精细与多样化分解,此时MB拥有和此类小块数相对应的运动矢量。这种多模式的灵活细致的分块划分,更切合实际动目标形状,大大提高了动目标估值精度。

  c) 多参考帧模式预测:采取多参考帧模式,进行多于一帧的先前帧(最多5帧)动目标估值。此时对某个MB进行动目标估值时,会从过去的2个或3个刚编码过的参考帧中选一帧作参考,以改善动目标估值性能,提高译码器的误码恢复能力,取得更好的预测效果。

  d) 变尺寸块运动补偿(MC):例如平坦区可取16×16尺寸块,而细节区可采用8×8甚至4×4等更精细尺寸块,此时MC预测精度更高、灵活性更好,更符合视频内容不断变化的实际情况。

  e) 加权预测:H.264/AVC还允许对MC预测信号进行加权预测,可较大幅度改善无线信道衰落之类信道变化时的编码效率。

  f) MC时的环路去方块滤波:H.264/AVC把去方块滤波引入MC预测环路中,既可去除方块效应,又能保护图像细节边缘,同时亦改善了图像的主、客观评定质量。而且经过滤波后的图像根据需要放在缓存中用于帧间预测,此滤波器位于译码环中而非译码环外,从而又称环路滤波。

1.2.5 帧内方向空间预测

  由于单个图像帧内有较高空间冗余度,在空间域上进行帧内方向空间预测可获得更高压缩效率。对亮度预测通常取INTRA-4×4及INTRA-16×16两种方式,对图像中较平坦部分采用INTRA-16×16方式,对细化图像部分用INTRA-4×4块预测。预测前,应对当前块相邻的左、上重构块进行分类,根据不同分类,选择不同预测模式。INTRA-4×4共有9种预测模式,INTRA-16×16共有4种预测模式,对色度预测按INTRA-8×8块进行,亦共有4种预测模式。从而,精细的帧内方向空间预测可有效提高预测质量。

  这样,H.264/AVC的精细数字压缩编码技术取得了优良的压缩效率。测试结果表明:它比H.263++的平均编码比特率要少48.80%,比MPEG-4 ASP要少38.62%,相对H.263约提高了一倍压缩效率,很具吸引力。

 标签:
推荐视频会议厂商
广告联系:010-82755684 | 010-82755685 手机版:m.pjtime.com官方微博:weibo.com/pjtime官方微信:pjtime
Copyright (C) 2007 by PjTime.com,投影时代网 版权所有 关于投影时代 | 联系我们 | 欢迎来稿 | 网站地图
返回首页 网友评论 返回顶部 建议反馈
快速评论
验证码: 看不清?点一下
发表评论